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This work proposes a domain adaptive stochastic collocation approach for uncertainty
quantification, suitable for effective handling of discontinuities or sharp variations in the
random domain. The basic idea of the proposed methodology is to adaptively decompose
the random domain into subdomains. Within each subdomain, a sparse grid interpolant is
constructed using the classical Smolyak construction [S. Smolyak, Quadrature and interpo-
lation formulas for tensor products of certain classes of functions, Soviet Math. Dokl. 4
(1963) 240–243], to approximate the stochastic solution locally. The adaptive strategy is
governed by the hierarchical surpluses, which are computed as part of the interpolation
procedure. These hierarchical surpluses then serve as an error indicator for each subdo-
main, and lead to subdivision whenever it becomes greater than a threshold value. The
hierarchical surpluses also provide information about the more important dimensions,
and accordingly the random elements can be split along those dimensions. The proposed
adaptive approach is employed to quantify the effect of uncertainty in input parameters
on the performance of micro-electromechanical systems (MEMS). Specifically, we study
the effect of uncertain material properties and geometrical parameters on the pull-in
behavior and actuation properties of a MEMS switch. Using the adaptive approach, we
resolve the pull-in instability in MEMS switches. The results from the proposed approach
are verified using Monte Carlo simulations and it is demonstrated that it computes the
required statistics effectively.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Micro-electromechanical systems (MEMS) have been used in widespread applications such as micro-switches, gyro-
scopes, accelerometers, etc. In order to design and analyze such devices it is required to accurately model the interaction
of various physical fields such as mechanical, electrical and fluidic. In recent years, advances in numerical simulation meth-
ods have increased the ability to accurately model these devices [2–5]. These simulation methods assume that the material
properties and various geometrical parameters of the device are known in a deterministic sense. However, low cost manu-
facturing processes used for MEMS often result in significant uncertainties in these parameters which may lead to large var-
iation in the device performance. Thus, in order to design reliable and efficient electrostatic MEMS devices, it is required to
quantify the effect of uncertain input parameters on various relevant performance parameters.
. All rights reserved.
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Uncertainties can be described using stochastic quantities – uncertain parameters can be modeled using random vari-
ables and uncertain spatial functions are represented as random fields. Using this, the original governing equations can
be reformulated as stochastic partial differential equations (SPDEs). Traditionally, sampling based methods such as Monte
Carlo (MC) method has been used for systems with random input parameters. It involves generating various realizations
of the input parameters according to the underlying probability distribution, and repeatedly employing the deterministic
solver for each realization. Although the MC method is straightforward to implement and readily generates the required
statistics, the simulations may become expensive as it offers slow convergence rate. Notably, the convergence rate for the
MC method does not depend on the number of random dimensions or the smoothness of the stochastic solution in the
random domain. The convergence of the MC method can be improved by using techniques such as the Latin hypercube
sampling (LHS) [6], the quasi-Monte Carlo (QMC) method [7] and the Markov Chain Monte Carlo (MCMC) method [8],
etc.

An important non-sampling approach is based on stochastic Galerkin method, where the basic idea is to project the un-
known stochastic solution onto a stochastic space spanned by complete orthogonal polynomials. The stochastic Galerkin
method was initially developed by Ghanem and Spanos [9] using Wiener–Hermite polynomial chaos expansion [10], where
the orthogonal polynomials are chosen as global hermite polynomials in terms of Gaussian random variables. This idea was
further generalized by Xiu and Karniadakis [11], to obtain exponentially converging algorithms even for non-Gaussian ran-
dom variables. We developed a stochastic Lagrangian framework based on generalized polynomial chaos (GPC) in [12], to
handle the uncertain electromechanical interaction. It was demonstrated that the stochastic framework can be effectively
used to quantify the effect of uncertain input parameters on the performance of MEMS devices, as long as the solution is
smooth in the random domain.

The stochastic Galerkin method provides high accuracy and faster convergence rate. However, as the number of stochastic
dimensions of the problem increases, the number of basis functions needed to obtain accurate results increases rapidly,
which reduces the efficiency. Also, the coupled nature of the deterministic equations that need to be solved to determine
the modes of the solution makes the implementation non-trivial. It may be further complicated in situations when the gov-
erning equations take complicated form, such as nonlinear terms and coupled multiphysics.

In recent years, another class of methods known as stochastic collocation method [13–15] has been explored. The sto-
chastic collocation method provides high resolution as stochastic Galerkin method, as well as easy implementation as the
sampling based methods. This approach is based on approximating the unknown stochastic solution by constructing sparse
grid interpolants in the multi-dimensional random domain, based on the Smolyak algorithm [1]. Using this algorithm, inter-
polation schemes can be constructed with orders of magnitude reduction in the number of support nodes to give the same
level of approximation (up to a logarithmic factor) as the usual tensor product.

The stochastic Galerkin and collocation approaches provide fast converging approximations as compared to the sampling
based methods, assuming that the unknown stochastic solution is sufficiently smooth in the random domain. However, in
many physical systems, small variations in the uncertain parameters may lead to jumps in the solution. For example, in
MEMS actuators, because of the nonlinear nature of the electrostatic actuation force, small variation in material properties
and geometrical parameters may lead to a well known phenomenon known as pull-in. This pull-in instability is manifested as
a discontinuity in the switch displacement in the random domain. In order to accurately compute the statistics of the sto-
chastic solution in such situations, it is important to correctly capture these discontinuities in the random domain. To this
end, several efforts have been made using the Galerkin approach, such as the wavelet based Weiner–Haar basis functions
[16,17] and the multi-element GPC (ME-GPC) method [18,19]. The basic idea of ME-GPC is to adaptively decompose the ran-
dom domain into a set of random elements, and then to employ a GPC expansion within each element to locally approximate
the stochastic solution. This leads to a set of coupled deterministic equations that need to be solved within each random
element. An adaptive sparse grid collocation methodology was presented in [15], based on the dimensional adaptive quad-
rature algorithm given in [20], to study the equilibrium jumps encountered during the stochastic modeling of natural con-
vection problems. This approach automatically detects the more important dimensions and the sparse sampling is
appropriately biased in those dimensions.

This work proposes a domain adaptive stochastic collocation approach to effectively handle discontinuities or sharp varia-
tions in the random domain. The basic idea of the proposed methodology is to adaptively decompose the random domain
into subdomains. Within each subdomain, we then construct the sparse grid interpolant using the classical Smolyak con-
struction in a hierarchical fashion, to approximate the stochastic solution locally. The adaptive strategy is governed by
the hierarchical surpluses, which are computed as part of the interpolation procedure. These hierarchical surpluses then serve
as an error indicator for each subdomain, and lead to subdivision whenever it becomes greater than a threshold value. The
hierarchical surpluses also provide information about the more important dimensions, and accordingly the random elements
can be split along those dimensions.

During the preparation of this manuscript, the authors came across two recent methods which also deal with problems
with limited regularity in the stochastic domain. The first approach, multi-element probabilistic collocation method (ME-
PCM) proposed by Foo et al. [21], discretizes the parametric space, and prescribes a collocation/cubature grid on each ele-
ment. Although, both the ME-PCM method and our approach, adaptively decompose the parametric space into elements,
the construction of the interpolant within each random element, and, more importantly, the computation of local error indi-
cators, which ultimately leads to adaptive refinement, are significantly different. For the benefit of readers, we summarize
the key differences between the two approaches as follows:
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� The ME-PCM method constructs sparse/tensor interpolants within each random element using nodal interpolation. How-
ever, in our method, we employ hierarchical sparse grid interpolation within each random element. The construction of
the hierarchical interpolation is different than the usual procedure using nodal basis functions. This hierarchical construc-
tion is central to our adaptive refinement procedure and has been explained in detail in Section 4.

� Once the interpolant is constructed within each random element, the ME-PCM method then projects this interpolant onto
the GPC bases, in order to obtain the coefficients, using which the adaptivity criterion is evaluated exactly as described by
the ME-GPC framework [19]. On the other hand, in our method, the construction of the sparse interpolant within each
element, requires us to compute the so called hierarchical surpluses, which is the difference between the actual function
value and the value obtained using the interpolant from the previous level. As described in Section 5, these hierarchical
surpluses automatically yield an estimate for the interpolation error within each element, and can be appropriately used
to decide whether or not to refine a particular element and also along which random dimensions. Thus, the ways in which
the two approaches compute the adaptivity criterion are entirely different.

The second approach, introduced by Ma and Zabaras [22], relies on resolving the discontinuities using piecewise-multi-
linear basis functions, such that, as the adaptive refinement proceeds, functions with smaller support are inserted in parts of
the domain with limited regularity, as determined using the hierarchical surpluses. This method does not involve any expli-
cit decomposition of the random domain. On the other hand, in our approach, the discontinuities are resolved by adaptively
decomposing the parametric space into elements. As the adaptive refinement proceeds, only elements which do not meet the
prescribed error tolerance are subdivided, to locally approximate the solution with greater accuracy. Also, in our approach,
the interpolation within each random element can be constructed using piecewise-multilinear or Lagrange polynomials
based on suitable 1D rule, as their support is controlled by the size of the element.

We employ the proposed adaptive approach to study the effect of uncertain material properties and geometrical param-
eters on the pull-in behavior and actuation properties of a MEMS switch. Using the adaptive approach, we resolve the pull-in
instability in MEMS switches, which was not possible using the framework developed earlier in [12]. The results from the
proposed approach are verified using Monte Carlo simulations and it is demonstrated that it computes the required statistics
effectively. The rest of the paper is organized as follows: In Section 2 we present the deterministic and stochastic formulation
for the coupled electromechanical problem, applicable to static analysis of electrostatic MEMS. In Section 3 we briefly pres-
ent the Monte Carlo and the stochastic Galerkin framework for the stochastic electromechanical problem. We then explain
the stochastic collocation approach based on classical Smolyak construction in Section 4, using which the adaptive stochastic
collocation framework is developed in Section 5. In Section 6 we consider the numerical example of a MEMS switch and
study the effect of uncertain parameters on its pull-in behavior and actuation properties. We finally conclude the discussion
in Section 7.

2. Problem formulation

2.1. Deterministic formulation

Physical level analysis of electrostatic MEMS requires a self-consistent solution of the coupled mechanical and electro-
static equations. A framework for the deterministic analysis is presented in [4], which uses a Lagrangian description both
for the mechanical and the electrostatic domains. The mechanical deformation of the MEM structures is obtained by per-
forming a 2D geometrically nonlinear elasticity analysis [23]. Let X represent the undeformed configuration with boundary
dX ¼ dXg [ dXh. The governing equations for the deformation of the MEM structures in the absence of body force are given
as,
r � ðFSÞ ¼ 0 in X; ð1Þ
u ¼ G on dXg ; ð2Þ
P � N ¼ H on dXh; ð3Þ
where u is the displacement vector, F is the deformation gradient, P and S are the first and second Piola–Kirchoff stress ten-
sors, respectively. H is the electrostatic pressure acting on the surface of the structures and N is the unit outward normal
vector in the undeformed configuration. The prescribed displacement is given by G. The constitutive law can be written as,
S ¼ CE; E ¼ 1
2
ðFT F� IÞ; ð4Þ
where C is the material tensor and E is the Green–Lagrangian strain.
The electrostatic analysis is done using a Lagrangian boundary integral form as described in [24]. The Lagrangian boundary

integral equations are given by:
/ðPÞ ¼
Z

dX
GðpðPÞ; qðQÞÞrðqðQÞÞcðQÞdCQ þ C; ð5Þ

CT ¼
Z

dX
rðqðQÞÞcðQÞdCQ ; cðQÞ ¼ ½TðQÞ � CðQÞTðQÞ�

1
2; ð6Þ
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where r is the unknown surface charge density and C is an unknown constant that needs to be computed. P and Q refer to the
positions of source and field points, respectively, in the undeformed configuration. G is the Green’s function, which in 2D is
given as GðP;QÞ ¼ � 1

2p� ln jP � Q þ uP � uQ j, where � is the dielectric constant of the medium and jP � Q þ uP � uQ j repre-
sents the distance between the source and field points in the deformed configuration. CT represents the total charge of
the system, which is set to be zero. CðQÞ ¼ FTðQÞFðQÞ and TðQÞ is the unit tangential vector at the field point Q in the unde-
formed configuration. The electrostatic pressure acting on the conductors in the undeformed configuration can be computed
from the surface charge density as,
H ¼ PeJF�T N; ð7Þ
where Pe ¼ r2

2� is the electrostatic pressure acting normal to the surface of the conductors and J ¼ detðFÞ. Eq. (7) represents the
nonlinear coupling between the mechanical and electrostatic energy domains, and a relaxation or Newton scheme can be
used to obtain self-consistent solutions, as described in [4].

We can represent the coupled electromechanical system (Eqs. (1)–(3), (5) and (6)) as
Lðu;r; xÞ ¼ 0; x 2 X: ð8Þ
Such a system can be solved easily using finite element method (FEM) and boundary element method (BEM) [25]. State-of-
the-art design methodologies for MEMS are based on such deterministic approaches where the geometrical and physical
properties of the device are assumed to be known precisely. However, in practice, such devices may be subjected to severe
stochastic variations in these parameters, which must be considered during modeling.

2.2. Stochastic formulation

Let ðH;B;PÞ denote a probability space, where H is the set of elementary events, B is the r-algebra of events and P is the
probability measure. The symbol h specifies an elementary event in H and in the following presentation any quantity with h-
dependence denotes a random quantity. For the stochastic modeling of the coupled electromechanical system given by Eq.
(8), we seek displacement uðx; hÞ : X�H! R and surface charge density rðx; hÞ : dX�H! R, such that for P-almost every-
where h 2 H, the following holds
Lðu;r; x; hÞ ¼ 0; ðx; hÞ 2 X�H: ð9Þ
In order to solve the above problem numerically, we first need to reduce the infinite dimensional probability space into a
finite dimensional space. This can be accomplished by characterizing the input random parameters in terms of a finite num-
ber of random variables. For example, the input random processes can be decomposed into a set of uncorrelated random
variables using the Karhunen–Loève (KL) expansion [26]. Representing the set of random variables as n ¼ fniðhÞgn

i¼1, we
can write Lðu;r; x; hÞ ¼ Lðu;r; x; nÞ. Further, we assume that the random variables n are mutually independent. However,
we must note that representing the input random parameters in terms of independent random variables may not be a trivial
exercise. For example, when KL-expansion is used for representing non-Gaussian random processes, these random variables
would not necessarily be independent. In fact, the problem of representing non-Gaussian random processes in terms of inde-
pendent random variables is an area of active research [27].

Let n ¼ fnign
i¼1 represent mutually independent random variables with images Ci � niðHÞ and probability density func-

tions qi : Ci ! Rþ, for i ¼ 1; . . . ;n. Then, the joint probability density function qðnÞ is given as
qðnÞ ¼
Yn

i¼1

qiðniÞ 8n 2 C; ð10Þ
where C ¼
Qn

i¼1Ci represents the support of the set of random variables. Using this, we can rewrite Eq. (9) as: we seek ran-
dom displacement uðx; nÞ and surface charge density rðx; nÞ, such that
Lðu;r; x; nÞ ¼ 0; ðx; nÞ 2 X� C; ð11Þ
which represents a ðdþ nÞ-dimensional system, where d and n refer to the dimensionality of the physical space X and the
random space C, respectively.

3. Numerical solution of stochastic systems

In this section, we briefly present the two most widely used approaches for the numerical solution of stochastic systems
(such as Eq. (11)), namely, Monte Carlo (MC) method and stochastic Galerkin method.

3.1. Monte Carlo method

Monte Carlo simulation has been traditionally used for systems with random input parameters. It involves generating
various realizations of the input parameters according to the underlying probability distribution, and repeatedly employing
the deterministic solver for each realization. Eq. (11) can be easily solved using MC method as follows:
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1. For the given number of realizations N, generate independent and identically distributed (iid) random variables
fnjg ¼ ½n1ðhjÞ; . . . ; nnðhjÞ�, for j ¼ 1; . . . ;N.

2. For each of the realizations, solve the deterministic problem Lðuj;rj; x; njÞ ¼ 0 and obtain the solution ðuj;rjÞ, for
j ¼ 1; . . . ;N.

3. Compute the required statistics such as mean l and variance m, for example
lðuÞ ¼ 1
N

XN

uj; mðuÞ ¼ 1
N

XN

ðuj � lðuÞÞ2: ð12Þ

j¼1 j¼1

The amount of work required for a MC simulation to converge to a given accuracy � is �ðNÞ ¼ O N�
1
2

� �
, which is indepen-

dent of the number of random variables n. The convergence rate is quite low and it can be prohibitively expensive to achieve
high accuracy. The convergence can be slightly improved using quasi-Monte Carlo (QMC) method [7], where the determin-
istic problem is solved at structurally determined points, and not at random points as in MC method. The convergence rate
for QMC method is given as �ðNÞ ¼ OðN�1ðlog NÞnÞ, which is almost half an order better than the MC approach. However, the
convergence rate for QMC method depends weakly on the number of random variables n, and performance may suffer for
high dimensional problems. For MEMS, the Monte Carlo method incorporated in the ANSYS probabilistic design system
(ANSYS/PDS) has been used to study the effect of various geometrical features on the design of a comb drive [28].

3.2. Stochastic Galerkin method

The stochastic Galerkin method is based on representing the unknown random process wðx; hÞ in terms of the orthogonal
basis functions fWiðnðhÞÞg in multi-dimensional random variables as,
wðx; hÞ ¼
X1
i¼0

wiðxÞWiðnðhÞÞ; ð13Þ
where the coefficients fwig are deterministic and are computed using Galerkin projections in the space spanned by the basis
functions fWig. The functions fWig form an orthogonal basis in the probability space, with the orthogonality relation
hWi;Wji ¼ dijhW2
i i; ð14Þ
where dij is the Kronecker delta and h�; �i denotes the ensemble average, which is the inner product given as
hWi;Wji ¼
Z

H
WiðnÞWjðnÞdP: ð15Þ
The stochastic Galerkin method was initially developed using Wiener–Hermite polynomial chaos expansion [10], where the
basis functions fWig are chosen as global hermite polynomials in terms of Gaussian random variables. The method was fur-
ther generalized to improve performance for a wider class of problems, such as using hypergeometric polynomials from the
Askey scheme to obtain exponential convergence rate for non-Gaussian random processes [11], wavelet based Weiner–Haar
basis to deal with sharp or even discontinuous variation in the random domain [16,17] and piecewise polynomial expansions
[29,30].

We note that the expansion in Eq. (13) is usually truncated for numerical implementation. Using this for the stochastic
coupled electromechanical system given by Eq. (11), we first represent the random displacement field uðx; nÞ and the surface
charge density rðx; nÞ as,
uðx; nÞ ¼
XN

i¼0

uiðxÞWiðnÞ; and rðx; nÞ ¼
XN

i¼0

riðxÞWiðnÞ; ð16Þ
where N þ 1 is the total number of terms used. Using this in Eq. (11) we get,
L
XN

i¼0

uiWi;
XN

i¼0

riWi; x; n

 !
¼ 0: ð17Þ
The coefficients fuig and frig are determined using Galerkin projections onto each of the basis function fWj; j ¼ 0; . . . ;Ng,
L
XN

i¼0

uiWi;
XN

i¼0

riWi; x; n

 !
;Wj

* +
¼ 0: ð18Þ
Using the orthogonality of the basis functions fWig, this leads to N þ 1 coupled set of deterministic equations which can be
used to solve for the modes fuig and frig. The details of this approach for the stochastic modeling of electrostatic MEMS can
be found in [12].

The stochastic Galerkin method provides high accuracy and faster convergence rate and has been successfully applied to
various problems such as computational mechanics [31,32], diffusion [33], fluid flow [34,35] and heat conduction [36,37].
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However, as the number of stochastic dimensions of the problem increases, the number of basis functions (N þ 1) that need
to be considered increases rapidly, which reduces the efficiency. Also, the coupled nature of the deterministic equations that
need to be solved to determine the modes of the solution makes the implementation non-trivial. It requires substantial effort
to convert a deterministic code to a stochastic implementation. Moreover, when the governing equations take complicated
form, such as nonlinear terms [38–40] and coupled multiphysics [12,41], the numerical implementation of the stochastic
Galerkin method may not be straightforward and may require special techniques, such as those described in [42].

In recent years, another class of methods known as stochastic collocation method [13–15] has been explored. The sto-
chastic collocation method provides high resolution as stochastic Galerkin method, as well as easy implementation as the
sampling based methods, and is described next.

4. Stochastic collocation method

The stochastic collocation method is based on constructing polynomial interpolants in the multi-dimensional random
space. It only requires the deterministic solution at a pre-determined set of points in the random domain, using which the
multi-dimensional interpolant is constructed which approximates the unknown stochastic solution. The stochastic collo-
cation method has been described in [13] and has been used in [15] for stochastic natural convection problem. In this sec-
tion, we briefly present this framework as given in [13,15], as it is later used to develop the adaptive stochastic collocation
method.

4.1. Formulation

Let Pn denote the space of all n-variate polynomials with real coefficients and n ¼ ½n1; . . . ; nn� be any point in the random
space C � Rn. The Lagrange interpolation problem can then be stated as: Given a set of pre-determined points Xn ¼ fnigN

i¼1 in
the random domain C and a smooth function f : Rn ! R, find a polynomial I f 2 Pn, such that I f ðniÞ ¼ f ðniÞ;8i ¼ 1; . . . ;N. The
polynomial interpolation I f , using Lagrange interpolation functions can be given as,
I f ðnÞ ¼
XN

i¼1

f ðniÞLiðnÞ; ð19Þ
where LiðnjÞ ¼ dij; ði; jÞ 2 ½1;N�. The interpolated value of the function at any point n is then simply given as I f ðnÞ. Using Eq.
(19) for the stochastic electromechanical problem, we denote the interpolated displacement ûðx; nÞ and surface charge den-
sity r̂ðx; nÞ as,
ûðx; nÞ ¼
XN

i¼1

uðx; niÞLiðnÞ; r̂ðx; nÞ ¼
XN

i¼1

rðx; niÞLiðnÞ: ð20Þ
Using this in Eq. (11), the collocation procedure gives,
Lðû; r̂; x; nÞj
nk ¼ 0 8 k 2 1; . . . ;N: ð21Þ
Using the property of the Lagrange interpolation polynomials LiðnjÞ ¼ dij, this immediately leads to: for k ¼ 1; . . . ;N,
Lðuðx; nkÞ;rðx; nkÞ; x; nkÞ ¼ 0; x 2 X: ð22Þ
Thus, the stochastic collocation procedure reduces to solving N deterministic systems, at each nodal point nk; k ¼ 1; . . . ;N in a
given set of points Xn. We also note that these deterministic systems are naturally decoupled and existing deterministic sol-
ver can be readily used, unlike the stochastic Galerkin procedure where one needs to solve a set of coupled deterministic
equations. Once the deterministic solution is computed at all the collocation points, the statistics of the stochastic solution
can be easily computed using,
E½gðûÞ�ðxÞ ¼
XN

i¼1

gðuðx; niÞÞ
Z

C
LiðnÞqðnÞdn ¼

XN

i¼1

gðuðx; niÞÞwi; wi ¼
Z

C
LiðnÞqðnÞdn; ð23Þ
where E½�� denotes the expectation operator and the weights fwigN
i¼1 can be pre-computed using appropriate quadrature

scheme and stored for later use. The function gð�Þ can be chosen appropriately, by noticing that the mean lðûÞ ¼ E½û� and
the variance mðûÞ ¼ E½ðû� lðûÞÞ2�. We note that in writing Eq. (23) we have assumed that the function gðûÞ can also be
approximated as,
gðûÞðx; nÞ ¼
XN

i¼1

gðuðx; niÞÞLiðnÞ; ð24Þ
where the coefficients gðuðx; niÞÞ are easily computed using the sampled values of the unknown solution at the collocation
points.
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The construction of a Lagrange interpolation polynomial as given by Eq. (19) is central to the stochastic collocation ap-
proach. There exists a well-developed theory of univariate Lagrange interpolation. However, to construct such an interpola-
tion in higher dimensions is a non-trivial task, and is considered next.

4.2. Multi-variate sparse grid interpolation

The computational effort required for the collocation approach is typically N times the effort required for the determin-
istic problem, where N represents the total number of nodes in the set Xn. Thus, the key issue for the stochastic collocation
procedure is the selection of this set of nodes Xn, such that using the minimal number of nodes one achieves a good approx-
imation (to the desired accuracy level) by Lagrange interpolation. One such possible choice proposed in [13,15] is based on
the sparse grids generated using the Smolyak algorithm [1]. In this section, we describe the construction of these sparse grids
based on linear or higher degree interpolation using the notation as given in [43]. Without loss of generality, we assume that
the bounded support of the random variables fnign

i¼1 is Ci ¼ ½0;1�, and thus the bounded random domain C ¼ ½0;1�n is a n-
hypercube.

4.2.1. Hierarchical univariate interpolation
Let f : ½0;1� ! R be a function in 1D, which is approximated using a sequence of interpolation formulas given as,
Ikðf ÞðnÞ ¼
Xmk

j¼1

f ðnk
j Þl

k
j ðnÞ; for each k P 1; ð25Þ
with the set of support nodes X k ¼ fnk
j j n

k
j 2 ½0;1�; j ¼ 1; . . . ;mkg, and interpolation basis functions

lk ¼ flk
j j lk

j 2 C½0;1�; j ¼ 1; . . . ;mkg, such that lk
j ðn

k
i Þ ¼ 0; 8 i–j. Here k and mk refer to the depth of interpolation and the total

number of support nodes at depth k, respectively. One possible choice would be to use the piecewise linear basis functions
with equidistant nodes. For this choice, the set of equidistant nodes X k can be described using,
mk ¼
1; if k ¼ 1;
2k�1 þ 1; if k > 1;

�
ð26Þ

nk
j ¼

0:5; for j ¼ 1 if mk ¼ 1;
j�1

mk�1 ; for j ¼ 1; . . . ;mk if mk > 1:

(
ð27Þ
Using this set of points, the piecewise linear basis functions can be defined as follows,
lkj ðnÞ ¼ 1; for k ¼ 1; and; ð28Þ

lk
j ðnÞ ¼

1� ðmk � 1Þjn� nk
j j; if jn� nk

j j < 1
mk�1

0; otherwise;

(
ð29Þ
for k > 1 and j ¼ 1; . . . ;mk.
In the case of smooth objective functions, Lagrange polynomial interpolation offers faster error decay with increasing

number of nodes as compared to the piecewise linear interpolation. The approximation quality of the Lagrange interpolant
depends on the node distribution. Several node distributions which are known to perform better include Gauss quadrature
points, and the extrema of the Chebyshev polynomials (also known as Chebyshev Gauss–Lobatto nodes (CGL)). The set of CGL
nodes X k ¼ fnk

j g
mk
j¼1 are given as,
mk ¼
1; if k ¼ 1;
2k�1 þ 1; if k > 1;

�
ð30Þ

nk
j ¼

0:5; for j ¼ 1 if mk ¼ 1;

1� cos ðj�1Þp
mk�1

� �� �
=2; for j ¼ 1; . . . ;mk if mk > 1:

(
ð31Þ
The Lagrange polynomial basis functions are given as,
lk
j ðnÞ ¼

1; for k ¼ 1; andQmk

i¼1;i–j

n�nk
i

nk
j �nk

i
for k > 1 and j ¼ 1; . . . ;mk:

8><>: ð32Þ
We must note that both the set of nodes, namely equidistant and CGL, are nested and satisfy X k � X kþ1; k P 1. Using this
property, we can write the nodal interpolation formula given by Eq. (25), in a hierarchical fashion. We first define I0 ¼ 0,
and the incremental interpolant Dk ¼ I k � I k�1; 8 k P 1 [43–45]. Thus,
Dkðf Þ ¼ I kðf Þ � I k�1ðf Þ; ð33Þ
where, I kðf Þ ¼
P

nk
j 2X

k f ðnk
j Þl

k
j and I k�1ðf Þ ¼ I kðIk�1ðf ÞÞ. Using this, we obtain (see [43] for details),
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Dkðf Þ ¼
X

nk
j 2X

k

f ðnk
j Þl

k
j �

X
nk

j 2X
k

I k�1ðf Þðnk
j Þl

k
j ð34Þ

¼
X

nk
j 2X

k

f ðnk
j Þ � Ik�1ðf Þðnk

j Þ
� �

lk
j ; ð35Þ
and, since f ðnk
j Þ � I k�1ðf Þðnk

j Þ ¼ 0 8 nk
j 2 X k�1;
Dkðf Þ ¼
X

nk
j 2X

k
D

f ðnk
j Þ � I k�1ðf Þðnk

j Þ
� �

lkj ; ð36Þ
where X k
D ¼ X k n X k�1, with X0 ¼ ;, represents the set of nodes added to the set of support nodes in going from depth k� 1 to

k. Clearly, X k
D has mD

k ¼ mk �mk�1 elements, and numbering them consecutively as X k
D ¼ fn

k
j ; j ¼ 1 � � � ;mD

k g, we can rewrite
Eq. (36) as,
Dkðf Þ ¼
XmD

k

j¼1

f ðnk
j Þ � Ik�1ðf Þðnk

j Þ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wk
j

lkj : ð37Þ
As in [43], we define wk
j as the 1D hierarchical surpluses, which is the difference between the actual function value and the

value obtained using the interpolant from the previous level. We also define the set of functions lk
j as the hierarchical basis

functions. Using the incremental interpolant, we can rewrite the nodal interpolant in Eq. (25) in a hierarchical fashion as,
I kðf Þ ¼ I k�1ðf Þ þ Dkðf Þ ¼
Xk

i¼1

Diðf Þ; ð38Þ
using the set of support nodes X k ¼
Sk

i¼1X i
D. The 1D nodal and hierarchical support nodes and basis functions for the case of

piecewise linear interpolation are plotted in Fig. 1.

4.2.2. Univariate to multi-variate interpolation
Given the univariate interpolation formula as in Eq. (25), to obtain an interpolation formula for the multi-variate case, one

could simply use tensor product, given as
ðIk1 	 � � � 	 I kn Þðf Þ ¼
X

n
k1
j1
2Xk1

� � �
X

nkn
jn
2Xkn

f ðnk1
j1
; . . . ; nkn

jn
Þ � ðlk1

j1
	 � � � 	 lkn

jn
Þ; ð39Þ
where k ¼ ½k1; . . . ; kn� represents the depth of interpolation used in each direction. Using the hierarchical representation for
the 1D formulas (Eq. (38)), this tensor product can be rewritten as,
ðIk1 	 � � � 	 I kn Þðf Þ ¼
Xk1

i1¼1

� � �
Xkn

in¼1

ðDi1 	 � � � 	 DinÞðf Þ: ð40Þ
Clearly, the tensor product formula requires a very high number of support nodes N ¼ mk1 � � �mkn . Even for a poor approx-
imation employing just two nodes ðmki

¼ 2; 8iÞ in each direction, this number N ¼ 2n grows rapidly for high dimensions
n
 1. Thus, although the tensor product formula easily extends the univariate interpolation formula to the multi-dimen-
sional case, it rapidly gets expensive as the number of dimensions grows.

The Smolyak algorithm [1] provides a way to extend the univariate interpolation formula to higher dimensions using the
minimal number of support nodes. The algorithm employs tensor products in a special way such that it leads to orders of
Fig. 1. Univariate nodal and hierarchical basis functions and support nodes for linear interpolation.
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magnitude reduction in the number of support nodes, while maintaining the interpolation quality of the univariate formula
for higher dimensions up to a logarithmic factor [44]. The algorithm was proposed in [1] and has been extensively explored,
such as in [44,46,47]. Using the 1D incremental interpolant defined in Eq. (33), the sparse interpolant Aq;n, where q is the
depth of interpolation ðq P 0; q 2 N0Þ and n is the number of stochastic dimensions, is given by the Smolyak algorithm as,
Fig.
Aq;nðf Þ ¼
X
jkj6nþq

ðDk1 	 � � � 	 Dkn Þðf Þ ¼ Aq�1;nðf Þ þ
X

jkj¼nþq
ðDk1 	 � � � 	 Dkn Þðf Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DAq;nðf Þ

; ð41Þ
with A�1;n ¼ 0, and jkj ¼ k1 þ . . .þ kn. Comparing this to the tensor product formula given by Eq. (40), it can be seen that the
sparse interpolant Aq;n only utilizes support nodes and basis functions with the restriction jkj 6 nþ q, which leads to the re-
duced sum. Using the 1D incremental interpolant given by Eq. (37), the n-dimensional incremental sparse interpolant
DAq;nðf Þ, can be written as,
DAq;nðf Þ ¼
X
jkj¼nþq

X
j

ðlk1
j1
	 � � � 	 lkn

jn
Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

lkj

� ðf ðnk1
j1
; � � � ; nkn

jn
Þ � Aq�1;nðf Þðnk1

j1
; � � � ; nkn

jn
ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wk
j

; ð42Þ
where j ¼ ðj1; . . . ; jnÞ denotes the multi-index, such that je ¼ 1; . . . ;mD
ke

and e ¼ 1; . . . ; n. As for the 1D case, the coefficients
fwk

j g are defined as hierarchical surpluses, which is the difference between the actual function value and the value obtained
using the interpolant from the previous level. For the case of continuous functions, the hierarchical surpluses tend to zero as
the depth of interpolation q is increased. The adaptive stochastic collocation approach described later, employs these hier-
archical surpluses as error indicators to govern the adaptive refinement procedure.

From Eq. (41) we can also observe that the Smolyak construction is hierarchical, which means that the accuracy of the
interpolation can be improved by increasing the parameter q, and without having to discard previous results. In order to con-
struct the sparse interpolant Aq;n, one needs to evaluate the function at sparse grid points Hq;n given by,
Hq;n ¼
[

jkj6nþq

ðX k1
D � � � � � Xkn

D Þ; ð43Þ
recalling that the univariate interpolation nodes are selected in a nested fashion, Xk�1 � X k, and X k
D ¼ X k n X k�1. The sparse

grid Hq;n can also be written in a hierarchical fashion as,
Hq;n ¼ Hq�1;n [ DHq;n; DHq;n ¼
[

jkj¼nþq

Xk1
D � � � � � X kn

D

� �
; ð44Þ
with H�1;n ¼ ;. Thus, in order to increase the depth of interpolation from q� 1 to q in n-dimensions, one only needs to eval-
uate the function at newly added set of points given by DHq;n. The tensor and sparse grids for the case of piecewise linear
interpolation using depth ki ¼ 3; i ¼ 1;2, are shown in Fig. 2, which illustrates a reduction in number of support nodes.

Remark 1. We must note that while constructing the interpolation hierarchically, the coefficients of the interpolation basis
functions are not the nodal function values, but are hierarchical surpluses (see Eq. (42)). Thus, when we compute the
variance using Eqs. (23) and (24), the coefficients gðuðx; niÞÞ also denote the hierarchical surpluses corresponding to the
hierarchical interpolation for gðuÞ, which can be trivially constructed using the sampled solution at the collocation nodes.
4.2.3. Interpolation error estimates
Using the univariate error bounds, a priori error estimators for Smolyak construction are derived in [44]. For a n-variate

objective function f : ½0;1�n ! R, we first define,
2. Set of support nodes for piecewise linear interpolation. (a) Tensor grid X3 	 X3. (b) Sparse grid using Smolyak algorithm H2;2 ¼
S2

q¼0DHq;2.
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Fr
n ¼ ff jD

bf continuous if bi 6 r 8 ig; Dbf ¼ @jbjf

@nb1
1 � � � n

bn
n

with b 2 Nn
0 and jbj ¼

Pn
i¼1

bi. Then, for f 2 F2
n , the error bound for the Smolyak construction using piecewise linear basis func-

tions is given as,
kf � Aq;nðf Þk1 6 cn � ðN�2 � jlog2Nj3ðn�1ÞÞ; ð45Þ
where cn > 0 is a constant which only depends on n, Aq;n denotes the sparse interpolant of f, and N ¼ dimðHq;nÞ is the total
number of support nodes. Similarly for f 2 Fr

n, the error bound using higher-order Lagrange polynomials can be given as,
kf � Aq;nðf Þk1 6 cn;r � ðN�r � jlog2Njðrþ2Þðn�1Þþ1Þ: ð46Þ
where cn;r > 0 is a constant which depends only on n and r.
From Eqs. (45) and (46) we can observe that for sufficiently smooth functions, the convergence rate of the stochastic col-

location method using either piecewise linear or polynomial interpolation would be orders of magnitude faster than the
Monte Carlo (MC) or quasi-Monte Carlo (QMC) method, which were mentioned in Section 3.1. The performance of the sparse
grid method would suffer with increasing the number of dimensions (unlike MC method) because of the weak dependence
on the dimension in the logarithmic term. However, it has been shown in [13] that for the number of random dimensions as
high as 50, the sparse grid method is far more efficient than the brute force MC method. At this point, we also notice that the
sparse grid method offers exponential convergence only when the considered function is sufficiently smooth or the mixed
derivatives are continuous. In later sections, we demonstrate through numerical examples that the convergence rate is dras-
tically reduced for non-smooth functions. Based on this observation, we propose an adaptive stochastic collocation approach
which can be effectively used for situations where one expects jumps or discontinuities in the random domain.

4.3. Numerical examples

In this section we consider a numerical example to demonstrate the sparse grid interpolation procedure using piecewise
linear and polynomial basis functions based on the Chebyshev extrema. This example also serves as a motivation for the
adaptive sparse grid interpolation approach. In this work, we have used the sparse grid interpolation toolbox developed
by Klimke [45,48], where we have either modified the existing functions or added new subroutines as required. Consider
a two-dimensional function as follows:
f ðn1; n2Þ ¼
0; if n1 > a1; n2 > a2;

sinðpn1Þ sinðpn2Þ; otherwise;

�
ð47Þ
where 0 6 n1; n2 6 1. In the following presentation, we denote the n-variate Smolyak interpolant of depth q, based on piece-
wise linear interpolation functions as AL

q;nðf Þ and the corresponding sparse grid as HL
q;n. Similarly, the n-variate sparse inter-

polant of depth q constructed using Lagrange interpolation functions based on Chebyshev nodes is represented as AC
q;nðf Þ and

the corresponding sparse grid as HC
q;n.

4.3.1. Interpolation of smooth functions
For a1 ¼ a2 ¼ 1; f ðn1; n2Þ represents a smooth function in domain ½0;1�2. We construct the sparse interpolants AL

q;2ðf Þ and
AC

q;2ðf Þ, where the accuracy of interpolation increases with increasing q. The approximate function f as given by AL
9;2ðf Þ is

shown in Fig. 3(a). We compute the interpolation error as,
eL;C
q;nðf Þ ¼max

nj2X f

jf ðnjÞ � AL;C
q;nðf Þðn

jÞj; ð48Þ
where X f represents a sufficiently fine grid, employed to compute the error. The interpolation error eL
q;2ðf Þ and eC

q;2ðf Þ are
plotted in Fig. 3(b) with increasing depth of interpolation q. As expected from Eqs. (45) and (46), the interpolation error de-
cays much faster using higher-order Lagrange interpolation as compared to piecewise linear interpolation. The linear inter-
polation leads to an accuracy of � 1� 10�4 for q ¼ 9 using 3329 support nodes, as compared to an accuracy of � 1� 10�6 for
q ¼ 5 using 145 nodes. The corresponding sparse grids are shown in Fig. 4.

In addition to the interpolation error, we also consider the error in the moments, such as mean and variance, since ulti-
mately we are interested in approximating the statistics of the random solution. The relative error in mean eL;C

q;nðlÞ and var-
iance eL;C

q;nðmÞ are computed as,
eL;C
q;nðlÞ ¼

jl0 � lðAL;C
q;nðf ÞÞj

jl0j
; eL;C

q;nðmÞ ¼
jm0 � mðAL;C

q;nðf ÞÞj
m0

; ð49Þ
where l0 and m0 are the actual mean and variance (computed analytically for the considered test functions), respectively, and
lðAL;C

q;nðf ÞÞ and mðAL;C
q;nðf ÞÞ are the approximate mean and variance, respectively, which can be computed using Eq. (23). The

relative error in mean and variance, with increasing level of interpolation q, is plotted in Fig. 5. As expected, the error in
the statistics also decays faster using polynomial interpolation as compared to linear interpolation.



Fig. 3. Interpolation of a smooth function using sparse grid interpolation procedure.

Fig. 4. Sparse grid collocation nodes for a two-dimensional problem.

Fig. 5. Error in the statistics using piecewise linear and polynomial interpolation.
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4.3.2. Interpolation of non-smooth functions
In many physical systems, small variations in the uncertain parameters may lead to jumps in the solution. For example, in

MEMS switches, small variation in material properties and geometrical parameters may lead to pull-in, which is manifested
as a discontinuity in the switch displacement in the random domain. In order to accurately compute the statistics of the sto-
chastic solution using sparse grid interpolation technique, it is important to correctly capture these discontinuities in the
random domain. We again consider the objective function as given by Eq. (47), for a1 ¼ a2 ¼ 0:5. The function f has sharp
discontinuities at n1 ¼ 0:5 and n2 ¼ 0:5 planes. The sparse grid interpolation is used to construct an interpolant for this
function.

In Fig. 6(a) we plot the interpolation error obtained using linear and polynomial basis functions with increasing level of
interpolation. We observe that the convergence rate for both linear and polynomial interpolation are sub-linear for q 6 11.
The linear interpolation leads to an accuracy in the range 1� 10�4 for q ¼ 13 which includes 69,633 grid points. For the same
number of support nodes, the polynomial interpolation could only provide an accuracy in the range 1� 10�1. This suggests
that for discontinuous functions it is better to use piecewise linear interpolation as compared to polynomial interpolation.
We also notice that the convergence rate for the discontinuous function is much slower as compared to the continuous case
(shown in Fig. 3(b)), since the function no longer satisfies the regularity condition as required for error bounds given in Eqs.
(45) and (46). In Fig. 6(b) we observe same trend for relative error in mean and variance, where we obtain an accuracy in the
range 1� 10�2 using 69,633 support nodes for the discontinuous function, as compared to an accuracy of 1� 10�4 using
3329 nodes for the continuous function case. The interpolated function and corresponding sparse grids using linear interpo-
lation for various levels of interpolation are shown in Fig. 7.
5. Adaptive stochastic collocation method

The performance of the sparse grid interpolation deteriorates in the presence of discontinuities, as expected from Eqs.
(45) and (46) and shown by the numerical example considered earlier. A dimension adaptive sparse grid interpolation
algorithm has been developed in [20] and further explored in [15,45], where important dimensions are sampled differ-
ently and ultimately it leads to employing larger number of support nodes in those dimensions. However, such an ap-
proach may not significantly improve the performance of the classical Smolyak construction in situations where most
of the considered random dimensions are important. Such a situation can occur more frequently for physical systems
where one may need to consider only a moderate number of random parameters, each of which may lead to a disconti-
nuity in the stochastic solution.

In order to effectively handle such situations, we propose an adaptive stochastic collocation approach. The adaptive
refinement proceeds as follows: we begin with the entire random domain, which is subdivided into several subdomains
or elements during the course of the refinement procedure. For the random domain, we construct a coarse interpolant using
the classical Smolyak algorithm. Such a construction involves computing the hierarchical surpluses, using which we estimate
the local contribution of the random element towards the global error. In addition, the hierarchical surpluses are also used to
estimate the more sensitive random dimensions. Based on these error estimates, we subdivide the random domain into sub-
domains along the most sensitive dimensions, as explained in the next section. The refinement procedure is then repeated
for each subdomain until the required error tolerance is achieved. Finally, the required statistics such as mean and variance
can be easily computed using the local statistics computed within each subdomain.
Fig. 6. Error in interpolation and statistics for discontinuous function.
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5.1. Adaptivity criterion

We recall that the random domain was characterized by n mutually independent random variables n ¼ ½ni�ni¼1, where
n : H! C ¼ ½0;1�n. During the adaptive refinement procedure, the random domain C is decomposed into Nd non-overlapping
subdomains, such that C ¼

SNd
s¼1C

s. For each of the subdomains s, we define the indicator function IsðnÞ as,
IsðnÞ ¼
1 if n 2 Cs;

0 otherwise:

�
ð50Þ
Let us assume that the approximate solution in the sth-subdomain is constructed using Smolyak interpolant of depth qs. We
note that in order to employ the basis functions and sparse grids defined on the hypercube ½0;1�n, we need to map the sub-
domain Cs appropriately. We recall that the interpolation requires computation of hierarchical surpluses wk

j (Eq. (42)) where
k ¼ ½k1; � � � ; kn� represents the depth of interpolation used in each direction, and j ¼ ½j1; � � � ; jn� denotes the multi-index, such
that je ¼ 1; . . . ;mD

ke
and e ¼ 1; . . . ;n. These hierarchical surpluses can be used to effectively guide the adaptive refinement

strategy. We note that the incremental sparse interpolant DAq;n corrects the interpolation Aq�1;n at the newly added grid
points DHq;n. Therefore, the interpolation error in the random element s using an interpolant of depth qs can be estimated as,
bs ¼ max
jkj¼nþqs

ðjwk
j jÞ; ð51Þ
which is the maximum of the hierarchical surpluses corresponding to newly added nodes given by grid DHqs ;n. Using this, we
will split a random element s if the following criterion is satisfied,
bsJs P s1; ð52Þ
where Js ¼ PrðIs ¼ 1Þ is the probability that n lies in sth-subdomain, and s1 is the prescribed error tolerance.
Furthermore, in order to identify the more sensitive random dimensions, we define another error measure ci; i ¼ 1; . . . ; n

as,
ci ¼
X

j;k¼ki

ðwk
j Þ

2
; i ¼ 1; � � � ;n; ki ¼ fk : ki ¼ qs þ 1; kj ¼ 1 8 j–ig: ð53Þ
We recall from Eq. (42) that the incremental sparse interpolant DAqs ;n is constructed by employing tensor product of the 1D
interpolation formulas which satisfy jkj ¼ nþ qs. Each of the error measures ci, includes contribution only from those newly
added nodes which correspond to employing an interpolation of maximum allowable depth ki ¼ qs þ 1 in the ith-dimension
and coarsest interpolation with depth kj ¼ 1; 8 j–i, in all other directions. Thus, each of the error measures ci gives an esti-
mate of the error along the ith-dimension and can be used to identify the more sensitive random dimensions. We split each
random element into two equal elements along all random directions which satisfy,
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ci P s2 � ðmax
j¼1;...;n

cjÞ; 0 < s2 < 1; i ¼ 1; . . . ; n; ð54Þ
where s2 is a tunable parameter, which is chosen as 0.5 in this work.
We illustrate the refinement procedure for the case of piecewise linear interpolation using depth qs ¼ 1, in Fig. 8. We be-

gin with the random element as shown in Fig. 8(a), and for simplicity, denote the hierarchical surplus corresponding to each
node as fwig5

i¼1. Using this, the error estimates can be computed as,
bs ¼ max
i2½2;5�
ðwiÞ; c1 ¼ w2

2 þw2
3; and c2 ¼ w2

4 þw2
5: ð55Þ
The new random elements and the corresponding support nodes which are created based on the adaptivity criterion are
shown in Fig. 8(b–d).

We must note that when a random element s is split into subdomains, the local interpolant of depth qs, which had
already been computed, is no longer used, and such an interpolant needs to be constructed again for each of the subdo-
mains. This implies that the functional evaluations at the support nodes of the grid corresponding to an interpolant of
depth qs are wasted at each refinement step. However, this additional cost is not very significant since we employ a very
coarse interpolant ðqs ¼ q0 ¼ 1Þ within each subdomain. In order to represent the actual cost of the adaptive algorithm, we
report both the actual number of grid points N at any adaptive iteration step, as well as the total number of functional
evaluations eN , for the numerical examples. In Fig. 9 we illustrate a few steps of the adaptive refinement procedure for
a two-dimensional problem.

5.2. Computation of moments

After we obtain the local approximation within each subdomain, we can construct the global moments as described by
Wan and Karniadakis for the case of ME-GPC in [18]. In each of the subdomains, we define a random vector gs : I�1

s ð1Þ ! Cs,
subject to the conditional PDF qsðgsÞ, given as,
qsðgsÞ ¼ qðgsÞ
PrðIs ¼ 1Þ : ð56Þ
Using this, we can approximate the mth-moment of the stochastic solution uðnÞ on the entire random domain, using law of
total probability [26] as,
Decomposition of a random element based on the adaptivity criterion. (a) Original random element s, (b) c2 < s2 � cm 6 c1, (c) c1 < s2 � cm 6 c2, (d)
2 � cm; ðqs ¼ 1; cm ¼maxi¼1;2ciÞ.
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humðnÞi �
Z

C
ûmðnÞqðnÞdn ¼

XNd

s¼1

PrðIs ¼ 1Þ
Z

Cs
ûmðgsÞqsðgsÞdgs: ð57Þ
In this work, since we assume n to be a vector of n mutually independent uniformly distributed random variables in ½0;1�,
qðnÞ ¼ 1 and PrðIs ¼ 1Þ ¼ VolumeðCsÞ. Also, the integral over Cs in Eq. (57), can be mapped to the standard domain ½0;1�n, by
introducing another random vector ns ¼ gsðgsÞ : I�1

s ð1Þ ! ½0;1�
n, with a PDF qs

n ¼ 1, where,
gsðgsÞ : gs
i ¼ ðb

s
i � as

i Þn
s
i þ as

i ; i ¼ 1; . . . ; n; ð58Þ
and ðas
i ; b

s
i Þ; i ¼ 1; . . . ;n define the subdomain Cs ¼ ½as

1; b
s
1Þ � ½as

2; b
s
2Þ . . .� ½as

n; b
s
nÞ. Using this, Eq. (57) can be rewritten as,
humðnÞi �
XNd

s¼1

PrðIs ¼ 1Þ
Z
½0;1�n

ûm
s ðn

sÞdns; ð59Þ
where ûsðnsÞ represents the approximate solution in sth-subdomain.

5.3. Error estimate

Following [18] it can be shown that the error in the L2 norm of the mth-moment of the random field uðnÞ can be written as
a weighted sum of the local L2 error in the mth-moment in each random element,
� ¼
Z

C
ðumðnÞ � ûmðnÞÞ2qðnÞdn ¼

XNd

s¼1

Js�
2
s

 !1
2

; ð60Þ
where � and �s denote the global and local error, respectively, and Js ¼ PrðIs ¼ 1Þ denotes the weight. The basic idea behind
the adaptive sparse grid collocation approach is to capture the discontinuity into smaller random elements, such that its con-
tribution towards the global error is minimal. For example, if the discontinuity lies in the element s
, we may not be able to
reduce the local error �s
 to the desired accuracy level by increasing the depth of interpolation qs
 , but we can certainly re-
duce the product Js
�2

s
 by further refining the element s
. This error reduction strategy makes sense, since in the random do-
main we are only interested in computing the moments of the stochastic solution accurately. Although, we have not proved
any error bounds for the local error �s for the case of discontinuous functions, we expect it to be bounded as the size of the
random element is adaptively reduced. We demonstrate the validity of such an assumption for the case of using piecewise
linear interpolation within each subdomain through numerical examples. The adaptive stochastic collocation methodology
is detailed in Algorithm 1.

Algorithm 1. Adaptive sparse grid collocation scheme

1: Pre-processing. Identify uncertain parameters (material properties and geometrical parameters) and represent them in
terms of independent random variables n : H! C ¼ ½n1; n2; . . . ; nn�T , such that n represents the dimension of the random
domain C.

2: Sampling. Sample the stochastic solution at the set of sparse grid points generated adaptively, as follows:
a. Initialization. Set number of subdomains Nd ¼ 1, depth of interpolation in each subdomain qs ¼ q0; s ¼ 1; . . . ;Nd. Spec-

ify desired error tolerance s1 and parameter s2.
b. Repeat.
c. Loop over all subdomains s ¼ 1; . . . ;Nd.
Solve the deterministic problem at the sparse grid nodesHqs ;n, and compute the error estimates bs and ci; i ¼ 1; . . . ;n.
If ðbsJs P s1Þ, then

If ci P s2 � ðmaxj¼1;...;ncjÞ; i ¼ 1; . . . ;n; then.
Add dimension i to the index set Is.
End If

Split the random element s into two equal elements along all directions contained in index set Is. Update the number
of subdomain Nd.

Else Do Nothing for element s.
End If.
d. Until ðbsJs < s1Þ; s ¼ 1; . . . ;Nd.

3: Post-processing. Compute the statistics (such as mean and standard deviation) of the deformation uðx; nÞ and surface
charge density rðx; nÞ.



Remarks. In this work, we have applied the proposed adaptive collocation framework to problems with discontinuities in
the random domain. This framework can be easily extended to develop effective algorithms for certain other situations such
as sharp local variations or skewed joint PDFs, by noting the following points.

� Here, we developed the adaptive collocation strategy using Smolyak interpolant of fixed depth qs based on piecewise lin-
ear basis functions. In the presence of discontinuities in the stochastic domain, such a strategy offers significant reduction
in the computational effort, as demonstrated by numerical examples in the next section. However, for situations where we
do not expect discontinuities in the stochastic domain but sharp local variations, the use of liner interpolation may be
restrictive, as the higher-order interpolation offers faster convergence rate. For such cases, we can easily extend our adap-
tive framework by using higher-order polynomial basis functions and choosing between subdivision or increasing the
depth of interpolation qs at each refinement step, just like the hp-refinement for the physical space.

� The statistics such as mean and variance over the entire random domain are computed as a weighted sum of the local
statistics, which are obtained by independently solving the local approximation problem within each subdomain. This fea-
ture of our adaptive framework can be used to develop hybrid strategies, where for each subdomain, one can estimate the
local statistics by any method of choice in addition to stochastic collocation (SC), such as Monte Carlo (MC) or generalized
polynomial chaos (GPC), and employ these to obtain the global statistics.

� The standard stochastic collocation method works by first approximating the stochastic solution with high precision, by
increasing the depth of interpolation, and then by computing the moments as given by Eq. (23). Such a framework may
not result in an optimal node distribution with respect to computing the statistics, especially for the case of skewed
joint probability distribution. However, the proposed adaptive collocation framework should work well in such situa-
tions, since the random elements are subdivided according to the criterion bsPrðIs ¼ 1ÞP s1, where the local error con-
tribution is automatically weighed according to the probability density. Even for the case of smooth stochastic solution,
such a refinement strategy would ultimately result in higher number of support nodes in regions with higher probabil-
ity density.

5.4. Numerical illustration

5.4.1. Function with line singularity
We now revisit the interpolation problem considered in Section 4.3.2, for the non-smooth function f given by Eq. (47), for

a1 ¼ a2 ¼ 0:5, and employ the adaptive interpolation procedure. In Fig. 10 we plot the interpolation error obtained using
classical Smolyak construction and the adaptive procedure based on piecewise linear basis functions. The interpolation error
is computed as before, given by Eq. (48). We present the interpolation error for the adaptive procedure using various values
for the parameters s1 and q0. We note that s1 represents the error tolerance parameter and governs how frequently the ran-
dom elements are decomposed, while q0 denotes the depth of interpolation, and hence determines the accuracy within each
random element. We first fix q0 ¼ 5 and decrease the required error tolerance level s1 ¼ 10�3;10�4 and 10�5. As can be seen
from Fig. 10, since lower value of s1 results in more frequent decomposition of random elements, it also leads to lower inter-
polation error. Also using s1 ¼ 10�5 and q0 ¼ 5, the adaptive procedure leads to an accuracy in the range 1� 10�4 using
15,805 nodes, as opposed to 69,633 nodes using the classical construction.

We now fix s1 ¼ 10�5 and compare the interpolation error obtained using q0 ¼ 1 and 5. Since q0 ¼ 5 employs more accu-
rate interpolation within each random element as opposed to q0 ¼ 1, it also leads to lower overall interpolation error. Thus,
in order to drive the interpolation error to the desired accuracy level, we need to carefully choose both q0 and s1.

For the purpose of uncertainty quantification, we are more interested in reducing the error in the moments of the
unknown solution. We conducted several numerical experiments, which show that choosing a coarse interpolant within
each random element, such as q0 ¼ 1 or 2, which leads to a reasonable approximation within each element, the error in
the moments can be reduced to the desired accuracy level by simply decreasing the error tolerance level s1. In Fig. 11



Fig. 10. Interpolation error for the non-smooth function using classical and adaptive interpolation procedure based on piecewise linear basis functions.

Fig. 11. Error in statistics using classical and adaptive sparse grid interpolation, q0 ¼ 1.
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we plot the relative error in mean and variance obtained using the classical and adaptive interpolation procedure based
on piecewise linear interpolation. As we reduce the error tolerance parameter s1 from 10�2 to 5� 10�4, the relative error
in mean decreases from 1:49� 10�2 to 2:00� 10�4, and that in variance from 2:98� 10�2 to 1:66� 10�5. This shows that
we can obtain the required accuracy by reducing the parameter s1. We also note that the adaptive procedure provides
significant improvement, as it leads to an accuracy in the range � 10�4 in mean and variance, using just 1425 functional
evaluations, as opposed to an accuracy � 10�2 using 69,633 nodes for the classical construction. The evolution of the
interpolated function, corresponding random elements and sparse grid nodes are plotted in Fig. 12. We also compare
the computational cost and accuracy of the moments obtained using adaptive stochastic collocation (ASC) procedure
and the Monte Carlo (MC) method in Table 1. As can be easily seen, using 1425 functional evaluations, the ASC proce-
dure approximately leads to 2 and 1 orders of magnitude reduction in the error in mean and variance, respectively, as
compared to the MC method.

From Fig. 11 one should notice that towards the later stages of the adaptive refinement procedure, we obtain a sharp de-
crease in the error in mean and variance. We would like to point out that this steep decrease is the result of the fact that
towards the last few adaptive iterations, the algorithm accurately captures the discontinuity along the element boundaries,
and hence adding only a few tens of nodes 